
OASIS: Prioritizing Static Analysis Warnings for Android Apps
Based on App User Reviews
Lili Wei, Yepang Liu, Shing-Chi Cheung

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong, China

{lweiae, andrewust, scc}@cse.ust.hk

ABSTRACT

Lint is a widely-used static analyzer for detecting bugs/issues in
Android apps. However, it can generate many false warnings. One
existing solution to this problem is to leverage project history data
(e.g., bug fixing statistics) for warning prioritization. Unfortunately,
such techniques are biased toward a project’s archived warnings
and can easily miss new issues. Another weakness is that developers
cannot readily relate the warnings to the impacts perceivable by
users. To overcome these weaknesses, in this paper, we propose a
semantics-aware approach, OASIS, to prioritizing Lint warnings
by leveraging app user reviews. OASIS combines program analysis
and NLP techniques to recover the intrinsic links between the
Lint warnings for a given app and the user complaints on the app
problems caused by the issues of concern. OASIS leverages the
strength of such links to prioritize warnings. We evaluated OASIS
on six popular and large-scale open-source Android apps. The
results show that OASIS can effectively prioritize Lint warnings
and help identify new issues that are previously-unknown to app
developers.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
Software testing and debugging; •Human-centered comput-

ing→ Smartphones; • Information systems→Retrievalmod-

els and ranking;

KEYWORDS

Static analysis, warning prioritization, Android Lint, app user re-
views, natural language processing, concept graph
ACM Reference format:

Lili Wei, Yepang Liu, Shing-Chi Cheung. 2017. OASIS: Prioritizing Static
AnalysisWarnings for Android Apps Based onAppUser Reviews. In Proceed-
ings of ESEC/FSE’17, Paderborn, Germany, September 04-08, 2017, 11 pages.
https://doi.org/10.1145/3106237.3106294

1 INTRODUCTION

Android app development has confronted great challenges posed
by the features of mobile platforms such as resource limitations
and fast-evolving ecosystems [28, 34, 35, 48]. Static code analyzers
such as Android Lint [8] enable developers to identify potential
bugs/issues in their apps before releasing them into the market.

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of

ESEC/FSE’17, September 04-08, 2017 , https://doi.org/10.1145/3106237.3106294.

Although static analyzers can help quickly detect various types of
issues without the need to execute the app under analysis, they
usually suffer from a high rate of false positives, which reduces
their usability [18, 32].

Existing studies [31, 44] have explored the possibilities of prior-
itizing static analysis warnings using historical issue fixing data.
Kim et al. [31] prioritized warning categories based on the warnings
eliminated by code changes. Ruthruff et al. [44] leveraged logistic
regression models to prioritize warnings using historical bug triage
and fixing statistics. One major limitation is that they strongly rely
on historical activities (e.g., warning fixing choices) and developers’
prior practices. As such, these techniques are intrinsically biased
to warnings that are similar to the fixed. They can miss many new
issues that arise from upgraded system libraries or have not been
encountered by developers before. To address these problems, in
this paper, we propose a new approach to effectively prioritizing the
warnings generated by static analysis tools. We base our discussion
on the Android apps and the most popular Android static analysis
tool Android Lint (Lint for short) [8].

Lint supports the detection of various types of issues that are of
multiple severity levels in Android apps [9]. Figure 1 illustrates a
Lint warning that describes a functional issue caused by a depre-
cated Android system event. Typically, for an app with a moderate
szie of code base, Lint would report hundreds to thousands of warn-
ings (see Section 5 for examples). One way to prioritize such a large
volume of warnings is to rank them by severity level. Unfortunately,
even after such ranking, the number of warnings with the highest
level of severity can still be unmanageable (see Section 3 for an
example). An alternative is to selectively disable some checkers in
Lint and thereby reduce the number of warnings. However, the
choice of disabled checkers is generally undecidable. A bad choice
would rule out many valid warnings while inducing invalid ones.

To overcome the limitations of the techniques discussed above,
we propose a new criterion for prioritizing Lint warnings for An-
droid apps. Our insight is that a warning should be ranked at a

higher place if its described issue can cause user-perceivable problems

(i.e., affecting visible app execution behavior). To effectively learn
user-perceivable problems for Android apps, we leverage the large
corpus of user reviews available on the app markets like Google
Play store. Existing studies [20, 22, 23, 42] have confirmed that app
user reviews can provide important information to facilitate app
development and maintenance. These studies propose to extract
useful information (e.g., requests for new features) by filtering or
categorizing user reviews. However, to the best of our knowledge,
none of them have ever leveraged user reviews to improve the
results of static code analyses.

https://doi.org/10.1145/3106237.3106294
https://doi.org/10.1145/3106237.3106294

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Lili Wei, Yepang Liu, Shing-Chi Cheung

To effectively prioritize Lint warnings, our approach, OASIS
(priOritize wArnings based on uSer revIewS), combines program
analysis and natural language processing (NLP) techniques to re-
cover the intrinsic links between Lint warnings and app user re-
views. Specifically, OASIS (1) performs program analysis to augment
Lint warnings with contextual information on the functionalities
that can be affected by the issues of concern and (2) leverages NLP
techniques to retrieve user-perceived problems from the app re-
views. In this way, OASIS is able to estimate the severity of Lint
warnings by analyzing frequency of user complaints on problems
caused by the issues of concern for effective prioritization. One
prominent challenge is that app user reviews are by nature unstruc-
tured and noisy. Users may describe a problem caused by an issue
in their own way. Without understanding the semantics/meaning
of user reviews, the links between Lint warnings and user reviews
cannot be accurately established. To address this challenge, OASIS
leverages Microsoft Concept Graph [12] for text understanding
and semantic similarity measurement. As we show later this can
significantly improve the effectiveness of warning prioritization.

We evaluated OASIS by conducting experiments on six popular
and large-scale open-source Android apps, which have a sufficient
number of recent user reviews. In the experiments, we observed
that OASIS is able to effectively prioritize useful warnings on real
issues that can cause user-perceivable problems. On average, it
achieves one order of magnitude improvement in precision over
Lint’s default warning prioritization strategy (i.e., by issue severity
level). Such an improvement significantly increases Lint’s useful-
ness. As we show later, some developers quickly confirmed and
fixed the warnings that are top ranked by OASIS. In addition, our
semantics-aware similarity measurement method also significantly
outperforms the traditional token-based textual similarity mea-
surement methods in linking user reviews with Lint warnings to
facilitate warning prioritization. In summary, we make the follow-
ing major contributions in this paper.
• We propose a novel approach OASIS to prioritizing static analysis
warnings for Android apps by leveraging app user reviews. To
the best of our knowledge, we are the first to study the intrinsic
links between static analysis warnings and app user reviews,
leveraging such links for effective warning prioritization. The
links generated by OASIS between a warning and the associated
user reviews facilitate developers to understand the warning’s
impacts. We find no such support in existing Android tools.
• We propose a semantics-aware similarity measurement method,
concept similarity, to calculate the similarity between structured
warning documents and natural language user reviews.
• We evaluate OASIS on six large-scale and representative open-
source Android apps. Our evaluation results confirm that (1)
OASIS can effectively identify useful warnings on issues that
cause user-perceivable problems, from a large number of Lint
warnings, and (2) our concept similarity can outperform tradi-
tional token-based similarity measurement methods.
Paper orgnization. Section 2 presents the basics of Android

Lint. Section 3 motivates our approach using a real example. Sec-
tion 4 describes our approach OASIS in detail. Section 5 evaluates
our approach. Sections 6 and 7 discuss threats to validity and related
work. Finally, Section 8 concludes the paper.

File: File: AndroidManifest.xml
Line: 221
Severity:WARNING
Description:Use of android.hardware.action.NEW_PICTURE
is deprecated for all apps starting with the N release inde-
pendent of the target SDK. Apps should not rely on these
broadcasts and instead use JobScheduler

Figure 1: A Lint warning for ownCloud

<receiver
android:name=".broadcastreceivers.InstantUploadBroadcastReceiver">
<intent-filter>

<action android:name="android.hardware.action.NEW_PICTURE" />
<data android:mimeType="image/*" />

</intent-filter>
<intent-filter>

<action android:name="android.hardware.action.NEW_VIDEO" />
<data android:mimeType="video/*" />

</intent-filter>
</receiver>

219.

220.
221.
222.
223.
224.
225.
226.
227.
228.

Figure 2: Lines 219–223 of ownCloud’s AndroidMani-

fest.xml

Title: Automatic uploads always fail
Author: Keith Slagerman
Rating: 2 Date: 2016-9-3
Comment: Instant upload not working after updating to v7.0.
Saw in the description today that this issue is supposed to be
fixed. Still not working though.
Title: Instant upload doesn’t work in nougat.
Author:William Goodwin
Rating: 1 Date: 2017-1-12
Comment: Only reason I bought this app.
Title: Might be good
Author: Joseph Noyes
Rating: 3 Date: 2016-7-4
Comment: So far the most important part of the app... For my
use case.... Is instant download and it doesn’t work on Android
N. That being said N is in Beta so of course I expect to run into
these issues... But i also expect that this will be fixed on the first
stable N release and I will upgrade my rating at that time.

Figure 3: Example user reviews of ownCloud

2 PRELIMINARIES OF ANDROID LINT

Android Lint is a static code analysis tool for Android apps [8].
It scans the source files (e.g., Java code files, resource and config-
uration files) of Android apps to detect potential bugs/issues for
improving the apps’ correctness, security, performance, usability,
accessibility, and internationalization. Since Lint is directly available
(runs by clicking menu items) in the Android Studio [3], the official
IDE for Android app development, it has become a widely-used
quality assurance tool for Android app developers.

Issues and checkers. Lint supports the detection of hundreds
of types of issues [9]. Each type of issues is detected by a checker
and annotated with a pre-defined severity level: ERROR,WARNING,
WEAK WARNING, INFO, or TYPO. Lint users can customize the
severity levels. They can also suppress the detection of certain types
of issues when they consider the issues to be spurious.

Warning instances. Upon detecting a potential issue, Lint re-
ports to developers the issue’s location, severity level, and problem
description. We call such a report a warning instance (or warning
for short). Note that a warning in our work can describe an is-
sue of any severity level (ERROR, WARNING, WEAK WARNING,

OASIS: Prioritizing Static Analysis Warnings for Android Apps

Based on App User Reviews ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

INFO, or TYPO). Figure 1 shows an example warning generated
by Lint when analyzing ownCloud [13], a popular open-source
file syncing and sharing app for Android devices. The described
issue has a severity level ofWARNING. It is detected at line 221 in
the AndroidManifest.xml file (issue location) of ownCloud. This
warning indicates that the app registers broadcast receivers to mon-
itor and handle a deprecated type of system broadcast message,
namely android.hardware.action.NEW_PICTURE, which will not
be sent starting from the Android N release (i.e., Android 7.0). It
also suggests that the app should use the JobScheduler (an API
for scheduling jobs to be run in an app’s own process [2]) instead.

3 MOTIVATION

The high false warning rate has long been considered a major
limitation of static analyzers like Lint [18, 21, 32]. Unlike existing
techniques [31, 44] that prioritize warnings based on project histo-
ries, our work prioritizes warnings based on a criterion of whether
they prescribe an issue causing user-perceivable problems that af-
fect app security, functionality, or performance. Our intuition is
two-fold. First, most of such problems observed and reported by
users are real. Therefore, warnings are likely true if they correspond
to these problems. Second, existing studies have reported that such
security, functionality, and performance issues are among the top
types of code issues that developers would like program analyzers
(like Lint) to detect [21]. As such, our ranking policy prioritizes
warnings that are likely true and of concern to developers.

However, identifying user-perceivable problems caused by a
particular issue is generally difficult and expensive. For example,
it may require extensive user studies to understand the problems.
Fortunately, for Android apps, there are a lot of publicly available
user reviews in app stores. The interactive feedback systems of app
markets enable users to rate an app andmake comments easily. Such
reviews can provide useful knowledge about the user-perceivable
problems and hence can be leveraged to prioritize Lint warnings.

Key ideas.We observe that app user reviews and Lint warnings
are intrinsically related. Both of them can be viewed as comments
on the problems of Android apps. User reviews contain prolific in-
formation on user feedback such as the complaints about problems
caused by certain issues, while Lint warnings provide hints at the
app source level on issues that potentially affect the quality of An-
droid apps. Our idea is to recover the links between a warning that
reports an issue detected by Lint and its related user reviews. Via
such recovered links, we can estimate the significance of the Lint
warning (and thus the severity of the issue) by looking at the fre-
quency of user complaints about the corresponding issue-inducing
problems. To ease understanding, we use a real example to illustrate
how user reviews can be linked to a Lint warning and demonstrate
the major challenges that we need to address.

Recovering links between Lintwarnings and user reviews.

Let us consider the warning shown in Figure 1. As mentioned ear-
lier, it reports that ownCloud registers a broadcast receiver for a
deprecated type of broadcast message, which is no longer sent since
the advent of Android 7.0 (i.e., Android N or Nougat). This breaks
the functionality of ownCloud on those devices running Android
7.0 or above. Figure 3 lists several user reviews that complain about
the broken instant upload on Android 7.0 devices. In this example,

we can observe the links between the user reviews and the warn-
ing description. For instance, Review #3 mentioned “Android N”,
which is also included in the warning description as “N release”.
This indicates the possibility of applying natural language process-
ing techniques (e.g., textual similarity based ones) to recover the
intrinsic links between Lint warnings and user reviews.

Augmenting warning descriptions. However, the first chal-
lenge is that the links built by simply considering warning de-
scriptions and user reviews can be weak and imprecise. This is
because the warning descriptions are pre-defined templates. They
provide only brief information and do not capture any program
context specific to the apps under analysis. Therefore, warnings
should be augmented with program contextual information (e.g.,
surrounding lines and call hierarchies) to enhance the linking ac-
curacy. For example, Figure 2 shows the lines surrounding the
location of the ownCloud issue. Note that ownCloud registers the
InstantUploadBroadcastReceiver to handle the deprecated type
of system broadcast message. In the comments of Review #1 and
Review #2, the functionality of “instant upload” was reported to
be broken. We also note that the keywords “instant upload” are
included in the class name of the registered broadcast receiver,
which can be found at the lines near the issue location. Hence, by
augmenting the warning descriptions with such contextual infor-
mation, we can recover the links between a Lint warning and its
related user reviews.

Handling unstructured and noisy user reviews. The user
reviews in Figure 3 suggest that app users tend to comment in
their own style by using their preferred wording, expressing subjec-
tive feeling, or providing imprecise information. Such unstructured
and noisy natural language data pose the second challenge to the
accurate recovery of the links between Lint warnings and user re-
views. Take Review #2 as an example. Its title mentions the instant
upload problem, but the user comment provides no useful infor-
mation relevant to the problem. Without properly handling such
noise, we may mistakenly build the links between the review and
those warnings whose description contains keywords such as “buy”
or “purchase”. This motivates us to leverage existing user review
filtering techniques [22] to eliminate noise and non-informative
reviews from the user review corpus. Another example is that “in-
stant download” mentioned in the comments of Review #3 is not a
functionality provided by ownCloud. In fact, the user intended to
complain about “instant upload” rather than “instant download”.
Such cases can be common as non-technical end users may confuse
“upload" with “download". In this example, “upload” and “down-
load” are two semantically related concepts with different tokens.
Therefore, applying simple textual similarity calculation based on
tokens will miss such semantic links between Lint warnings and
user reviews. This motivates us to consider word semantics in the
link discovery process (see Section 4.2).

Finally, the warning in this example was buried under more
than 2,400 other warnings reported by Lint for ownCloud. If app
developers simply rank the warnings based on the issue severity
levels assigned by Lint, this warning will be ranked after other
370 ERRORs and likely ignored by the developers. On the other
hand, since there are many user complaints about this problem, the
corresponding issue is certainly a prominent one that needs to be
attended in due course. Our approach is designed to help developers

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Lili Wei, Yepang Liu, Shing-Chi Cheung

Warning Transformation & Augmentation User Review Filtering & Prioritization

Semantics-Aware Warning Prioritizer

Ranked Warnings

Lint Warnings User reviews

Spelling Correction

Stanford Tokenizer

Camel Case Tokenizer

Stanford Tokenizer

Warning Document & User Review Preprocessing

Stop Word Remover

Stanford Word Stemmer

TF-IDF Based Token Weighter

Figure 4: Overview of OASIS (components with our major

contributions are highlighted with bold text)

successfully identify such warnings among a huge number of other
warnings. In the next section, we present our approach in detail.

4 OASIS APPROACH

The goal of OASIS is to prioritize the warnings reported by Lint for
Android apps using the information retrieved from user reviews.
Figure 4 gives an overview of OASIS. It takes the Lint warnings
for a given app and its user reviews as input and then outputs a
ranked list of the warnings. OASIS first transforms the warnings
and augments them with contextual information to generate warn-
ing documents. In parallel, OASIS leverages a state-of-the-art tool,
SURF [22], to filter out non-informative user reviews. Thereafter,
OASIS prioritizes the warnings by leveraging a widely-used concept
graph and a semantics-aware similarity calculation technique.

4.1 Document Preparation and Preprocessing

In the first step, OASIS processes its two inputs, extracts contex-
tual information for warnings, and eliminates noise. Specifically, it
performs the three following tasks:

1) Warning transformation and augmentation.
2) User review filtering and prioritization.
3) Warning document and user review preprocessing.

4.1.1 Warning Transformation and Augmentation. As discussed
in Section 3, a key challenge for linking user reviews with Lint warn-
ings is that the information contained in the warning descriptions
is inadequate for accurately retrieving related user reviews. OASIS
addresses this challenge by augmenting warnings with contextual
and user-perceivable code information. Specifically, for each Lint
warning, OASIS first generates a textual document named warning

document. Each warning document is initialized with the follow-
ing data, which can be extracted from the analysis results of Lint:
(1) warning category, (2) warning summary, (3) description of the
potential problems, and (4) information on the environment (e.g.,
Android 7.0+ in Figure 1) under which the problems can occur
(such environmental information is not always provided by Lint).
These initialized data aim to describe the concerned issue of the
warning in a succinct and pre-defined way. Next, OASIS searches
for three kinds of contextual and code-related information about

the functionalities that can be affected by the issue in the source
files of concern to further enrich each warning document.

1) Statements surrounding the issue location: OASIS first
extracts the statements neighboring the issue location from the
source file of concern. These statements provide important con-
textual information for each warning. As shown in Figure 2, the
neighboring statements of the issue location contain the name of
the registered broadcast receiver that encodes the broken function-
ality “instant upload”, which was complained about by users. The
number of statements preceding and following the issue location is
a configurable parameter in OASIS. Following an existing study’s
practice to capture code contextual features [36], the number is set
to 3 in our current implementation and evaluation.

2) Identifiers in call hierarchy (only for Java code warn-

ings): If a warning is reported at a source code line within a Java
methodm, OASIS enriches the corresponding warning document
withm’s name. It then traverses the call hierarchy to further include
the names of all methods that transitively invokem. The enclosing
methodm is the code artifact that is directly affected by the issue
described in the warning. By traversing the call hierarchy, all the
methods that have transitive calling relationships withm will be
included. In this way, the warning document is enriched with the
identifiers of functionalities that can be affected.1

3) Android components:We include identifiers of the Android
app components such as activities or broadcast receivers [2] that
can transitively access the issue location (e.g., invoking the con-
cerned code) as another piece of contextual information. These
top-level app components provide interfaces and functionalities
that are directly exposed to the users, and hence are more likely
to be described in user reviews. We extract these app components
using the following two criteria. For warnings on Java source code
lines, the app components can be extracted from the methods in the
call hierarchy because these methods are the component classes’
members. For warnings on XML elements that register app compo-
nents in configuration files, we match the names of the registered
app components against the Java class names. Since warnings on
app component registrations can affect any of the functionalities
provided by the app components, we include the identifiers of the
app component classes as well as their member methods and fields.

OASIS generates a warning document for each Lint warning
and augments it with the extracted data as described above to help
retrieve related user reviews.

4.1.2 User Review Filtering and Prioritization. While user re-
views provide prolific information of the apps that can facilitate
app development and maintenance, they often contain a lot of noise
that needs to be eliminated before use [20, 22, 23, 42].

To eliminate the noise in user reviews and retrieve the relevant
information of user-perceivable app problems, OASIS filters raw
user reviews using a state-of-the-art review analysis tool, SURF [22],
which is designed to exclude non-informative reviews and summa-
rize useful user reviews by categorizing them into different topics
and intentions. Specifically, SURF categorizes user reviews into
five intention categories: Information Giving, Information Seeking,

1It is a good practice to name a method according to its functionality. Please also note
that OASIS works on app source files and therefore it does not need to handle code
obfuscations, which often transform identifiers to meaningless ones.

OASIS: Prioritizing Static Analysis Warnings for Android Apps

Based on App User Reviews ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

Feature Request, Problem Discovery, and Other. Since we aim to learn
user-perceived app problems, we only keep those user reviews that
are categorized as Problem Discovery for further processing.

After filtering, we prioritize the remaining ones by assigning
weights to them based on their user ratings and submission dates.
Intuitively, user reviews with lower ratings tend to comment on
issues/bugs of an Android app and thus should be associated with a
higher weight. Given a review r , OASIS uses the following formula
to calculate its rating weight (i.e., the weight related to user ratings):

fratinд (r) = 1 −
ratinд(r) − Ratinдmin

Ratinдmax

Ratinдmax and Ratinдmin denote the maximum and minimum
rating supported by the corresponding user feedback system. The
function ratinд(r) returns the user rating of the review r . The rating
weight fratinд (r) is normalized as a negative linear function of the
review ratings. For example, on Google Play store, user ratings are
integers from 1 to 5. The rating weights for user reviews with a
rating 1, 2, . . . , 5 are mapped to 1, 0.8, . . . , 0.2 by OASIS.

When assigning a weight to a review, we also consider its sub-
mission date in addition to its user rating. Our idea is that newer
reviews should have a higher weight as they tend to reveal recent
problems that still exist in the app, while old reviews may comment
on legacy problems that may have already been fixed by developers.
Hence, we define the date weight (i.e., the weight related to date)
of a review r as:

fdate (r) = index (r)

The function index (r) returns the index of the review r in the list
of all reviews ranked in chronological order and the date weight
fdate (r) takes this value. Then, the overall weight of a user review
r , denoted f (r), can be calculated as the production of its rating
weight and date weight:

f (r) = fratinд (r) × fdate (r)

The overall weight of each review is leveraged later in our warning
prioritization procedures.

4.1.3 Warning Document and User Review Preprocessing. After
augmenting warning documents and extracting informative user
reviews, OASIS further preprocesses both of them to eliminate
noise and improve the accuracy of later NLP procedures. Following
existing studies on information retrieval and text mining [20, 22, 23,
33, 41, 49, 50], OASIS applies three standard preprocessing steps:
tokenization, stop word removal, and word stemming. For such
preprocessing, we use the Stanford NLP Library [37], which is
widely adopted by researchers and practitioners.

As shown in Figure 4, the preprocessing steps for warning doc-
uments and user reviews are slightly different as they have their
own unique features. Warning documents are structured and con-
tain both texts (e.g., problem descriptions) and code snippets (e.g.,
statements surrounding the issue locations). Since code snippets
and texts are in different formats, we apply different tokenization
methods. In Java, the camel case is a widely-used naming conven-
tion for identifiers in code [19, 38]. With this observation, OASIS
splits code snippets into tokens by underscores and capital letters.
Such a tokenization method for code snippets is also commonly
used in code repository mining studies [41]. After tokenizing code

snippets, the remaining texts in the warning documents will be
tokenized by a standard tokenizer.

On the other hand, user reviews are mostly natural language
texts and hence a standard tokenizer is sufficient for their tokeniza-
tion. However, unlike structured warning documents, user reviews
are often written in an informal way with many typos and much
noise [20]. Therefore, before tokenization, OASIS applies an extra
spelling correction step to fix typos and errors in user reviews. For
this purpose, OASIS integrates the English vocabulary module of
the JLanguageTool [11].

After tokenization, standard English stop word removal and
word stemming are applied on the tokenized warning documents
and user reviews. Finally, OASIS applies the term frequency - inverse

document frequency (TF-IDF) [43] method to filter out generic words
(e.g., phone, app) that appear frequently across documents in the
corpus for later steps.

4.2 Semantics-Aware Warning Prioritization

In this step, OASIS takes the processed warning documents and
user reviews to prioritize the input Lint warnings. The intuition of
our warning prioritization method is: a warning should be ranked
at a higher place if its described issue can cause problems complained

in a lot of app user reviews.
Based on this intuition, we design the ranking score of a warn-

ing w as the summation of the similarities between the warning
document ofw and the user reviews:

S (w,R) =
∑
ri ∈R

f (ri) × Similarity (w, ri)

In the formula, ri represents the i-th user review in a given app’s
user review set R. f (ri) is the weight for review ri as defined in Sec-
tion 4.1.2. The function Similarity (w, ri) calculates the similarity
between the warning document ofw and the user review ri .

As discussed in Section 3, one critical challenge in linking Lint
warnings to user reviews is that the user reviews are written in
users’ preferred wording and may provide imprecise information.
As such, traditional textual similarity calculation techniques that
model documents as tokens or entities may fail to precisely recover
the intrinsic links between Lint warnings and their related user re-
views. To address this problem, OASIS leverages Microsoft Concept
Graph [12] for text understanding and integrates semantic mean-
ings of words into document representation to calculate concept
similarity for linking Lint warnings and user reviews.

To show the effectiveness of our concept similarity in uncovering
the links between structuredwarning documents and free-style user
reviews, we compare the discovery results of the concept similarity
with two baselines: Jaccard similarity and cosine similarity, which
are based on the traditional token-based document representation
models. These two similarity measurement methods are widely
used in existing studies that leverage information retrieval and
textual mining techniques [24, 41, 49, 51–53]

In the following, we first briefly introduce the baseline methods
(they are also implemented in our tool) and then discuss the details
of our proposed concept similarity measurement method.

4.2.1 Baselines. Jaccard similarity calculation models docu-
ments as sets of tokens (or words) and measures the similarity
between two documents by looking at the number of common and

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Lili Wei, Yepang Liu, Shing-Chi Cheung

universal tokens contained in the two documents. Formally, Jaccard
similarity between a warningw and a user review r is defined as:

jaccard (w, r) =
|Tw ∩Tr |

|Tw ∪Tr |

Tw andTr are the sets of tokens in the warning document ofw and
the user review r respectively. As we can see, Jaccard similarity sim-
ply leverages the set intersection and union operations to compare
the documents and associates all tokens with equal weights.

Another popular document representation model is the bag-of-
words model weighted by TF-IDF values. The bag-of-words model
represents documents as vectors of words (or tokens) and the value
for each word is its corresponding TF-IDF weight. Cosine similarity
is commonly used to calculate the similarity between documents
represented by the bag-of-words model. Formally, cosine similarity
of a warningw and a review r can be defined as:

cosine (w, r) = cosine (Vw ,Vr) =
Vw
⊺ ·Vr

∥Vw ∥∥Vr ∥

Vw and Vr are the bag-of-words vectors of the warning document
of w and the user review r . The bag-of-words model and cosine
similarity are widely used in text mining studies [41, 49, 53].

4.2.2 Microsoft Concept Graph and Concept Similarity. To over-
come the limitation that traditional token-based models only com-
pare lexical tokens in the document, in our work, we represent the
documents with a new model based on the large corpus of concept
relationships provided by the Microsoft Concept Graph [12].

Microsoft Concept Graph is a large publicly available knowledge
base that captures the semantics of words by mapping words to
their concept categories. By querying the graph, a word can be
mapped to its semantic concept categories with probabilities. Thus,
a word can be represented as a concept vector that encapsulates
semantic information contained in the word. With the concept
vectors, a document can then be mapped into the space by:

cd = θ
⊺H

In the formula, θ⊺ is the vector of the TF-IDF values of the tokens
(words) in the document and H is the concept matrix. A concept
matrix is constructed by concatenating the concept vectors of all
tokens in the document (i.e., the concept vector of each token will
be one row in the matrix). Via matrix multiplication, a document is
mapped to a vector of concept categories, denoted as cd . Intuitively,
a document is mapped to the concept space by assigning a prob-
ability to each concept category to which the document belongs.
This probability is estimated by summing up the corresponding
probabilities of all the tokens contained in the document.

The concept similarity of a warningw and a review r can then
be computed as the cosine similarity between the corresponding
concept vectors of the warning document of w and the review
r , denoted cw ,cr , which can be constructed by using the above
formula. Formally, the concept similarity ofw and r is defined as:

concept (w, r) = cosine (cw ,cr)

With the above method, we can successfully integrate semantic
information of words into the similarity calculation between Lint
warnings and user reviews.

We note that there are other alternatives to integrate word se-
mantics into the similarity calculation procedures to accomplish

software engineering tasks. For example, Ye et al. [52] trained their
ownword embeddings fromAPI documents, tutorials, and reference
documents to represent code snippets and natural language texts
as vectors in a shared space for improving information retrieval
in software engineering tasks. We currently choose to leverage
Microsoft Concept Graph and propose our concept similarity due
to two major reasons. First, user reviews are unstructured and writ-
ten in casual language, which is difficult to learn from structured
API documents or tutorials. Microsoft Concept Graph is learnt
from billions of webpages and search logs. Its coverage of different
words/texts and concepts is extremely broad due to the big training
data and is more general than other knowledge bases [27]. Such a
large and general knowledge base can well capture the semantics of
diversified expressions in user reviews. Second, Microsoft Concept
Graph is publicly available and its knowledge base is continually
updated. Studies based on Microsoft Concept Graph to understand
short texts are proved to be very effective [27]. While Microsoft
Concept Graph is able to model semantics of general words, it is
still possible that Ye et al.’s word embedding technique based on a
specifically trained model can help better model program behaviors.
In future, we plan to combine both techniques to study whether it
can help achieve better results for Lint warning prioritization.

5 EVALUATION

5.1 Research Questions and Baselines

In this section, we present our experiments to evaluate OASIS’s
capability of identifying positive warnings among a huge number of
warnings generated by Lint when analyzing Android apps. Positive
warnings refer to those warnings of which the described issues can
cause user-perceivable problems (the concrete judging criteria will
be explained shortly in Section 5.2). In contrast, warnings of which
the described issues cannot cause user-perceivable problems are
referred to as negative warnings (e.g., false alarms or warnings on
code style issues). Specifically, our evaluation aims to answer the
following two research questions:
• RQ1 (Usefulness of user reviews): Can the use of app user re-

views facilitate the identification of positive warnings and improve

the usefulness of Lint’s static analysis?

• RQ2 (Effectiveness of concept similarity): Can our proposed

concept similarity contribute to OASIS’s performance of prioritizing

positive warnings?

To answer RQ1–2, we compared OASIS with these baselines:
• Baseline I: Ranking Lint warnings by each project’s adopted issue

severity settings. This baseline emulates a typical practice of app
developers when they inspect Lint warnings. We compare it with
OASIS to evaluate whether OASIS, which leverages app user
review data, can outperform this common practice.
• Baseline II: Ranking Lint warnings by the Jaccard and Cosine

similarity (Section 4.2.1).We compare OASIS with these two base-
line methods that leverage token-based similarity measurements
to study whether integrating semantic information can help im-
prove the effectiveness of warning prioritization. The other pro-
gram analysis and NLP steps of the two baseline follow those of
OASIS.

OASIS: Prioritizing Static Analysis Warnings for Android Apps

Based on App User Reviews ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

Table 1: Experimental Subjects

App Name Category KLOC Downloads Rating Version No. #Warnings # Reviews Issue ID

AnkiDroid [5] Education 60.8 1,000,000 - 5,000,000 4.5 2.8.1 5,404 3,621 4588
c:geo [6] Entertainment 83.3 1,000,000 - 5,000,000 4.4 2017.02.07 10,775 4,871 6344

K-9 Mail [10] Communication 92.8 5,000,000 - 10,000,000 4.2 5.203 5,751 8,181 2271
ownCloud [13] Productivity 53.6 100,000 - 500,000 3.7 2.2.0 2,462 948 1905
TransDroid [16] Tools 29.9 100,000 - 500,000 4.3 2.5.7 1,508 495 353
WordPress [17] Social 144.4 5,000,000 - 10,000,000 4.2 6.6 8,195 8,851 5247

5.2 Experimental Setup

5.2.1 Subjects and Ground Truth. For our experiments, we se-
lected the latest release versions of six popular and large-scale
open-source Android apps as the subjects. Table 1 gives the basic
information of each app subject, including the app name, category,
size (in KLOC), the number of downloads, user rating, the version
number, the total number of Lint warnings that are not suppressed
by developers, and the number of user reviews we crawled from
Google Play store. As shown in the table, these apps are popular
(received millions of downloads), large-scale (containing thousands
of lines of code), and diverse (covering six different categories).

To obtain results for Baseline I, we ran Lint on each app subject
and ranked all the warnings that are not suppressed by developers
for each app by the severity level of the corresponding issues. For
issues of the same severity, we shuffled the order of their warn-
ings five times and used the average evaluation metric values of
these five ranked warning lists as the final evaluation results for
Baseline I. To obtain results for Baseline II and OASIS, we ran our
implemented tool with three similarity measurement methods on
the Lint warnings and user reviews for each app, respectively. Our
experiments were conducted on an iMac with 3.2 GHz Intel Core
i5 CPU and 16 GB RAM.

To establish the ground truth, we manually inspected the ranked
warning lists produced by Baseline I, Baseline II, and OASIS to label
each warning as positive or negative. The labeling was performed
by two co-authors of this paper. Before the process, the two authors
discussed and reached a consensus on the criteria to distinguish
positive and negative warnings. Specifically, the two authors in-
dependently checked each warning’s program context to validate
whether the warning is a true positive (i.e., the described issue
really exists at the reported location). In the case of a true positive,
they further decided whether the described issue would cause user-
perceivable problems, including those that affect app functionality,
performance, compatibility, and security, by checking the official
Android API Guides [2], programming QA sites like Stack Over-
flow [15], and other online resources obtained by Google Search.
After independent labeling, the authors cross validated their results
and discussed the warnings that received different labels from them.
For such warnings, the two authors further manually constructed
test cases to confirm whether the issues of concern would indeed
cause perceivable problems. The labeling process is labor-intensive
and requires acquisition of much domain knowledge. In this work,
we only labeled the top 50 warnings in each ranked list reported by
Baseline I, Baseline II and OASIS. Specifically, we manually labeled
400 warnings for each of the six app subjects. In our experiments,
Baseline I produced five ranked warning lists due to the shuffling,
Baseline II produced two ranked warning lists, and OASIS produces

one ranked warning list. In total, we manually checked 2,400 warn-
ings, out of which 1,683 were unique. Among them, we identified
248 unique positive warnings in total. Then, we treated the set of
all these positive warnings the complete set of positive warnings
for later evaluation.

To further validate our ground truth, we randomly sampled
representative positive warnings and reported them to the app
developers for feedback. These issue reports are available online
and we provide the issue IDs in the last column of Table 1. By the
time of this paper’s acceptance, we have received positive feedback
from the developers of four subjects.

5.2.2 Evaluation Metric. Since the precision of the results is a
critical quality metric of static analysis tools [18], in our evaluation,
we applied the Precision@N metric to evaluate the performance of
OASIS. Precision@N reports the percentage of positive warnings
among the top N (N = 1, 5, 10. . .) warnings in each ranked list.
A higher value of precision@N indicates a better ranking result,
meaning that more positive warnings are ranked at the top of the
list such that when developers inspect the results for issue fixing,
they can easily identify positive warnings in the top ranked ones.
In the following subsections, we discuss our experimental results
and answer the two research questions.

5.3 RQ1: Usefulness of User Reviews

To answer RQ1, we compared the results of OASIS with those of
Baseline I. Table 2 presents the precision@N results of OASIS and
Baseline I for the six app subjects. From the results, we observe that
OASIS achieved 100% precision@1 for two of the apps and 100%
precision@5 for TransDroid. Overall, OASIS achieved over 50% pre-
cision@30 (up to 53.3%) and over 44.0% (up to 54.0%) precision@50
for four out of the six subjects. In most of the subjects, the precision
tends to drop as N grows (the trend is shown in Figure 5). This indi-
cates that OASIS can effectively identify positive warnings and rank
them most at top positions. Such results favor developers to check
the prioritized warnings one by one from the top. In comparison,
Baseline I performed much worse than OASIS. Among the top 50
ranked warnings, Baseline I only achieved an average precision of
5.2%. This indicates that by leveraging information retrieved from
app user reviews, OASIS can significantly outperform Baseline I,
which emulates the likely scenario of using static analysis tools like
Lint. Note that our Precision@N metric calculates the percentage
of positive warnings in the top N ranked warnings rather than
the percentage of true warnings (or true positives). According to
the definition of positive warning in Section 5.1 that true warn-
ings of the issues that cannot cause user-perceivable app problems
(e.g., code style issues or Javadoc issues) were considered negative

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Lili Wei, Yepang Liu, Shing-Chi Cheung

Table 2: Precision@N of OASIS and Baseline I

N AnkiDroid K-9Mail ownCloud TransDroid WordPress c:geo
OASIS Baseline I OASIS Baseline I OASIS Baseline I OASIS Baseline I OASIS Baseline I OASIS Baseline I

1 0.0% 0.0% 0.0% 0% 100.0% 0.0% 100.0% 0.0% 0.0% 40.0% 0.0% 0%
5 40.0% 8.0% 40.0% 0% 80.0% 12.0% 100.0% 0.0% 40.0% 16.0% 0.0% 0%
10 50.0% 4.0% 40.0% 0% 50.0% 6.0% 70.0% 0.0% 30.0% 14.0% 0.0% 0%
20 60.0% 2.0% 25.0% 0% 45.0% 9.0% 70.0% 0.0% 45.0% 18.0% 0.0% 0%
30 50.0% 2.0% 26.7% 0% 50.0% 8.7% 53.3% 0.0% 50.0% 17.3% 0.0% 0%
40 47.5% 1.7% 30.0% 0% 45.0% 9.0% 52.5% 0.0% 55.0% 18.0% 2.5% 0%
50 44.0% 2.8% 28.0% 0% 46.0% 9.2% 48.0% 0.0% 54.0% 18.8% 4.0% 0.4%

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

Pr
ec

is
io

n
(%

)

Top N Warnings

Concept Cosine Jaccard

(a) AnkiDroid

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

Pr
ec

is
io

n
(%

)

Top N Warnings

Concept Cosine Jaccard

(b) WordPress

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

Pr
ec

is
io

n
(%

)

Top N Warnings

Concept Cosine Jaccard

(c) ownCloud

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

Pr
ec

is
io

n
(%

)

Top N Warnings

Concept Cosine Jaccard

(d) TransDroid

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

Pr
ec

is
io

n
(%

)

Top N Warnings

Concept Cosine Jaccard

(e) K-9 Mail

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50
Pr

ec
is

io
n

(%
)

Top N Warnings

Concept Cosine Jaccard

(f) c:geo

Figure 5: Precision@N of OASIS with Different Similarity Measurement Methods

in our experiments. Therefore, the Precision@N metric values of
OASIS (and also Baseline I) are relatively low.

We also observe that in one subject, c:geo [6], OASIS failed to
identify a considerable number of positive warnings among the
top ranked ones while Baseline I performed worse. We reported
the few positive warnings detected by OASIS to the developers
of c:geo. Through the communication, we understand why the
precision of OASIS for c:geo is low. This is because the developers
of c:geo have integrated Lint into their app build process for a long
time. Everytime when c:geo was built, Lint was run to check for
potential issues. The developers would then quickly fix any issues
they considered useful and suppress the Lint checkers that often
reported false alarms. In fact, most serious issues reported by Lint
have been fixed by the developers and the remaining unfixed issues
are mostly false alarms or those that do not affect app execution
behaviors. It is also worth mentioning that after receiving our
feedback, the developers of c:geo immediately fixed our reported
issues and found that they missed these issues because of their
inappropriate Lint configuration.

Apart from c:geo, we also received positive feedback from de-
velopers of other three subjects. Warnings reported for AnkiDroid

were accepted and assigned to corresponding developers. Own-
Cloud developers have fixed the critical issue discussed in our
motivating example and K-9 Mail developers have fixed two of
the three categories of issues we reported. Such positive feedback
further confirms the importance of the issues identified by OASIS.

Answer to RQ1: By leveraging the information retrieved from

app user reviews, OASIS significantly outperforms Baseline I in

identifying positive warnings. OASIS can improve the usefulness

of Lint by effectively prioritizing its reported warnings.

5.4 RQ2: Effectiveness of Concept Similarity

Figure 5 plots the precision@N results generated by OASIS and
Baseline II. The results show that our proposed concept similarity
method significantly outperformed the token-based methods in
three of the apps, namely AnkiDroid, ownCloud, and WordPress.
Among these apps, the precision@N of OASIS consistently outper-
formed that of the other two baseline methods from N = 1 to N = 50.
For Transdroid, OASIS outperformed the baseline methods from N
= 1 to N = 40 and achieves similar precision when N is larger than
40. In addition, OASIS successfully ranked a positive warning at the
top one position of the warning list for ownCloud and TransDroid.

OASIS: Prioritizing Static Analysis Warnings for Android Apps

Based on App User Reviews ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

The only app, on which OASIS failed to outperform Baseline II,
is K-9 Mail [10].2 To understand the reason, we inspected the linked
user reviews and Lint warnings of K-9 Mail produced by the three
different methods. We found that 21 of 25 and 11 of 14 positive
warnings identified by cosine and Jaccard similarities are correlated
with the following two categories of similar issues:

The first category of issues is related to the usage of the dep-
recated Apache HTTP client APIs. The Android API Guides [2]
suggest that these APIs have not been actively maintained by the
Android team sinceAPI level 10 [4] and have been officially removed
from the Android SDK since the release of Android 6.0 [1]. However,
Apache HTTP APIs are widely used in K-9 Mail for network-related
tasks (e.g., markServerMessagesRead()). Users of K-9 Mail con-
stantly complained about the network or syncing problems caused
by the use of these APIs and thus the keywords like “connect” and
“server” were frequently mentioned in K-9 Mail’s user reviews. In
this situation, these commonly used tokens in user reviews can
perfectly match the keywords in the Lint warnings, and therefore
the token-based methods can also effectively identify such positive
warnings. Yet such good performance is rare as suggested by the
low precision of the Baseline II methods on the other app subjects.

The other category of issues is related to the usage of the dep-
recated Android system attributes Window.PROGRESS_START and
Window.PROGRESS_END. These two attributes in K-9 Mail are corre-
latedwith the variable pendingWork and themethod updateTitle().
In the warning augmentation step, the method and variable names
are included in the warning document as contextual information.
After tokenization, the tokens “work” and “update” are included
in the warning document. On the other hand, many users of K-9
Mail happened to complain that “the app does not work since the
last update”, which shares the tokens “work” and “update” with
the warning document. Thus, the warnings on the issues in this
category are accidentally ranked highly by the Baseline II meth-
ods, although the linkage between the warnings and user reviews
recovered by them is clearly wrong.

In contrast, the positive warnings ranked at the top 50 by OA-
SIS for K-9 Mail are more diverse. For example, OASIS recovered
positive warnings on two unique categories of issues that cosine
and Jaccard failed to recover. It also highly ranked some warnings
on the above-mentioned HTTP API and Android system attributes
related issues and precisely linked them to the relevant user reviews.

We also investigated why some negative warnings are ranked
top by OASIS. Take the top one warning in the ranked list re-
ported by OASIS for K-9 Mail as an example. It reports that method
parseCommandContinuationRequest() always returns true.While
this warning describes a true phenomenon, it is negative because
the method is supposed to always return true. The reason OASIS
ranks it at the top is because (1) this method is transitively in-
voked by many other methods that implement functionalities such
as user authorization and folder synchronization, and (2) lots of
user complaints on topics like “Couldn’t even get past the sign
up page” or “Email doesn’t download any more” are linked with
this warning. While the warning document and user reviews are
indeed semantically related and such semantic links can only be
2Here, we do not compare the results of the three methods on c:geo as the total number
of identified positive warnings is too low (we explained the reason when discussing
the results for RQ1) to produce meaningful comparisons.

recovered by our concept similarity method (e.g., “download” and
“sync” will not be correlated by token-based methods), the issue
described in the warning has no perceivable effects on these related
functionalities. Currently, OASIS cannot precisely capture the per-
ceivable impact of every issue and therefore cannot judge whether
or not this issue would affect the related functionalities. To address
this problem, the warning documents generated by OASIS need
to precisely capture the perceivable effect of the issues. Unfortu-
nately, understanding such semantics is challenging. In future, we
plan to augment warnings with more semantic information (e.g.,
code comments, information in API documentations) to further
improve OASIS.

Answer toRQ2:Concept similarity can improve the performance

of OASIS by recovering semantic links between structured warning

documents and free-style user reviews. Such links cannot be well

captured by token-based methods.

6 THREATS TO VALIDITY

Mismatch between user reviews and app versions. We used
all user reviews available at the Google Play store as the input in
our experiment. Since the Google Play store provides no attributes
in these reviews indicating which app version the users were com-
menting on, there are chances that some user reviews are related to
the historical versions of the examined app, inducing the mismatch
between app versions and user reviews. However, user reviews on
historical versions can only affect our results if the problems of con-
cern have already been fixed and Lint raises false warnings on such
problems. To address this threat, before linking user reviews and
Lint warnings, OASIS applies a filtering and weighting procedure
to weaken the impact of old user reviews. With such a treatment,
in our experiments, we did not observe any negative impacts from
the mismatch between app versions and user reviews.

Applying OASIS to other static analysis tools. The second
potential threat is that our approach may not generalize to other
static analysis tools for Android apps. We currently implemented
OASIS for the Android Studio built-in Lint analyzer because Lint
is easily accessible to developers and is widely used for improving
Android app quality [8]. However, our OASIS design is not specific
to Lint and in principle OASIS can also be applied to other static
analysis tools like FindBugs [7] or PMD [14]. For example, to work
with FindBugs, we only need to adapt the warning information
extraction part of OASIS such that the descriptions and severity
levels of the warnings generated by FindBugs can be extracted to
initialize the warning documents. We plan to evaluate OASIS with
other well-known static analyzers in our future extension of OASIS.

Limited number of evaluation subjects. Another threat is
that we only evaluated OASIS with six open-source Android apps.
Such a scale of evaluation may not be able to fully reveal the
strengths and limitations of OASIS. However, we can see from
Table 1 that these apps are diversified and representative, cover-
ing six categories with different numbers of warnings and user
reviews. In addition, we can also observe the difference between
evaluation results of these apps (e.g., c:geo is very well-maintained
and its developers make heavy use of Lint and thus OASIS cannot
largely improve the results of Lint). Such differences are caused
by the special characteristics of these apps. This also shows that

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Lili Wei, Yepang Liu, Shing-Chi Cheung

our current evaluation results can be a good estimation of OASIS’s
performance on a wide range of Android apps in practice.

Impacts of app user reviews’ quantity and quality. Our ap-
proach relies on app user reviews. The quantity and quality of
available user reviews can affect the performance of OASIS. OASIS
may not effectively prioritize static analysis warnings for apps with
no or few reviews. In our evaluation, we addressed this concern
by selecting subjects with different volumes of reviews (495–8,851,
see Table 1). OASIS achieved good performance. This indicates that
OASIS is applicable for apps with different volumes of reviews. In
future, we plan to further study how the quantity and quality of
app user reviews would affect the performance of OASIS.

7 RELATEDWORK

In this section, we discuss related work on mining user reviews and
static analysis warning prioritization.

7.1 Mining User Reviews

Various studies were made to leverage the prolific feedback infor-
mation provided by user reviews such as user ratings and user
comments to extract useful information to facilitate app devel-
opment. Harman et al. [26] were among the first to mine useful
information from app stores. They proposed a typical procedure for
app store mining and correlated app ratings with the number of app
downloads. Khalid et al. [29] leveraged user ratings and correlated
device information to prioritize Android devices to perform testing.

More recent work focused on mining useful information from
textual comments in user reviews. Khalid et al. [30] manually exam-
ined over 6,000 user reviews and highlighted that users frequently
complained about app issues that cause crashing or incompatibility.
This motivates us to leverage user reviews as a knowledge base to
learn user-perceivable problems. Other researchers aimed to auto-
matically extract useful information from a large number of user
reviews. Chen at el. [20] proposed AR-Miner to extract informative
user reviews by text classification. Gu et al. [23] designed SUR-
Miner to classify and cluster user reviews of an app to evaluate its
different aspects. Panichella et al. [42] combined NLP, text analysis,
and sentiment analysis techniques to categorize user reviews into
predefined categories to aid app development and maintenance.
Villarroel et al. [47] proposed CLAP to categorize and cluster user
reviews. CLAP is also able to prioritize the clustered user reviews
to help app release planning. Di Sorbo et al. [22] designed URM, a
two-level classification model to categorize user reviews based on
user intents and review topics. Based on URM, they implemented
SURF to categorize user reviews accordingly. Another pioneer work
correlated user ratings and code changes [40] and found that de-
velopers who take user reviews seriously (e.g., by implementing
requested features) are rewarded in terms of good app ratings. These
techniques laid the foundation of app review analysis and helped
OASIS filter out noisy user reviews. However, our work studies a
different problem and aims at linking user reviews to static analysis
warnings for improving the usefulness of static analysis tools.

7.2 Prioritizing Static Analysis Warnings

There are warning prioritization techniques designed for conven-
tional programs that can be applied to Android apps. Some existing

studies aimed to prioritize actionable warnings by statistical meth-
ods based on code revision histories and code characteristics. For
example, Kim et al. [31] prioritized static analysis warnings gener-
ated by FindBugs, PMD, and JLint in Java programs by mining code
revision histories. Ruthruff et al. [44] predicted actionable FindBugs
warnings by logistic regression with factors integrating warning
fixing histories. As discussed earlier, these techniques are by design
biased to warnings similar to the fixed ones, while OASIS does not
rely on the project history data of an app, but rather utilizes user
feedback to prioritize warnings such that warnings on new issues
that developers have not encountered before can also be identified.

Shen et al. [46] proposed EFindBugs to perform a two-phase issue
prioritization based on manually labeled warning false positive data
and user designations. Hanam et al. [25] leveragedmachine learning
techniques to learn actionable alert patterns and used the trained
classifier for warning prioritization. These techniques need either
significant manual efforts or a large amount of data to train the
classifier. In contrast, OASIS leverages accessible user reviews and
does not require additional manual efforts.

Finally, there are also other pieces of work proposing to redesign
a better architecture of static analysis tools to aid developers [39, 45].
These studies improve static analysis tools from a different angle.

8 CONCLUSION AND FUTUREWORK

In this paper, we presented a novel semantics-based approach, OA-
SIS, to prioritizing Lint warnings by leveraging app user reviews.
To achieve effective warning prioritization, OASIS augments Lint
warnings with contextual information and links them with app user
reviews that contain complaints on problems caused by the issues
of concern using our semantics-aware similarity calculation. We
empirically evaluated OASIS with six popular Android apps. The
results show that OASIS can effectively identify positive warnings
and significantly outperform a baseline strategy that emulates a
typical practice of app developers. We also experimentally validated
that our proposed semantics-aware similarity calculation technique
can largely improve the performance of OASIS when compared to
traditional token-based similarity calculation techniques.

Our study makes the first attempt to leverage semantics-based
similarity to link structured static analysis results with unstructured
user reviews. This work is still exploratory and can be improved in
multiple ways. In future, we plan to extend OASIS to leverage more
contextual information (e.g., developers’ comments in the code, API
documentations) for warning augmentation and further explore
other methods (e.g., word embedding [52]) to build semantic links
between static analysis warnings and user reviews.

ACKNOWLEDGMENTS

This research project is funded by RGC/GRF Grant 16202917 of
Hong Kong.

REFERENCES

[1] 2017. Android 6.0 Changes. https://developer.android.com/about/versions/
marshmallow/android-6.0-changes.html. (2017).

[2] 2017. Android API Guides. https://developer.android.com/guide/index.html.
(2017).

[3] 2017. Android Studio. https://developer.android.com/studio/index.html. (2017).
[4] 2017. Android’s HTTP Clients. https://android-developers.googleblog.com/2011/

09/androids-http-clients.html. (2017).

https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
https://developer.android.com/guide/index.html
https://developer.android.com/studio/index.html
https://android-developers.googleblog.com/2011/09/androids-http-clients.html
https://android-developers.googleblog.com/2011/09/androids-http-clients.html

OASIS: Prioritizing Static Analysis Warnings for Android Apps

Based on App User Reviews ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

[5] 2017. AnkiDroid Code Repository. https://github.com/ankidroid/Anki-Android.
(2017).

[6] 2017. c:geo Code Repository. https://github.com/cgeo/cgeo. (2017).
[7] 2017. FindBugs™-Find Bugs in Java Programs. http://findbugs.sourceforge.net.

(2017).
[8] 2017. Improve Your Code with Lint. https://developer.android.com/studio/write/

lint.html. (2017).
[9] 2017. Issue Checkers in Android Lint. http://tools.android.com/tips/lint-checks.

(2017).
[10] 2017. K-9 Mail Code Repository. https://github.com/k9mail/k-9. (2017).
[11] 2017. LanguageTool Style and Grammar Check. https://www.languagetool.org/.

(2017).
[12] 2017. Microsoft Concept Graph. https://concept.research.microsoft.com. (2017).
[13] 2017. ownCloud Code Repository. https://github.com/owncloud/android. (2017).
[14] 2017. PMD. https://pmd.github.io. (2017).
[15] 2017. Stack Overflow. http://stackoverflow.com. (2017).
[16] 2017. Transdroid Code Repository. https://github.com/erickok/transdroid. (2017).
[17] 2017. WordPress for Android Code Repository. https://github.com/

wordpress-mobile/WordPress-Android. (2017).
[18] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66–75.

[19] Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. 2009. To
CamelCase or Under_score. In ICPC. 158–167.

[20] Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen Zhang. 2014. AR-
Miner: Mining Informative Reviews for Developers fromMobile AppMarketplace.
In ICSE. 767–778.

[21] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis: An Empirical Study. In ASE. 332–343.

[22] Andrea Di Sorbo, Sebastiano Panichella, Carol V Alexandru, Junji Shimagaki,
CorradoAVisaggio, Gerardo Canfora, andHarald CGall. 2016. WhatWould Users
Change in My App? Summarizing App Reviews for Recommending Software
Changes. In FSE. 499–510.

[23] Xiaodong Gu and Sunghun Kim. 2015. What Parts of Your Apps Are Loved by
Users?. In ASE. 760–770.

[24] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni
Stroulia. 2012. Understanding Android Fragmentation with Topic Analysis of
Vendor-Specific Bugs. In WCRE. 83–92.

[25] Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. 2014. Finding Patterns in
Static Analysis Alerts: Improving Actionable Alert Ranking. In MSR. 152–161.

[26] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2012. App Store Mining and
Analysis: MSR for App Stores. In MSR. 108–111.

[27] Wen Hua, ZhongyuanWang, HaixunWang, Kai Zheng, and Xiaofang Zhou. 2015.
Short Text Understanding through Lexical-Semantic Analysis. In ICDE. 495–506.

[28] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real Challenges
in Mobile App Development. In ESEM. 15–24.

[29] Hammad Khalid, Meiyappan Nagappan, Emad Shihab, and Ahmed E Hassan.
2014. Prioritizing the Devices to Test Your App on: A Case Study of Android
Game Apps. In FSE. 610–620.

[30] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan.
2015. What Do Mobile App Users Complain about? IEEE Software 32, 3 (2015),
70–77.

[31] Sunghun Kim and Michael D Ernst. 2007. Which Warnings Should I Fix First?. In
ESEC/FSE. 45–54.

[32] Ted Kremenek and Dawson Engler. 2003. Z-Ranking: Using Statistical Analysis
to Counter the Impact of Static Analysis Approximations. In SAS. 295–315.

[33] Tien-Duy B Le, Richard J Oentaryo, and David Lo. 2015. Information Retrieval
and Spectrum Based Bug Localization: Better Together. In ESEC/FSE. 579–590.

[34] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and Detect-
ing Performance Bugs for Smartphone Applications. In ICSE. 1013–1024.

[35] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Jian Lü. 2014. GreenDroid:
Automated Diagnosis of Energy Inefficiency for Smartphone Applications. TSE
40, 9 (Sept 2014), 911–940.

[36] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In POPL. 298–312.

[37] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In ACL (System Demonstrations). 55–60.

[38] Sun Microsystems. 1999. Code Conventions for the Java Programming Language.
(1999).

[39] Mangala Gowri Nanda, Monika Gupta, Saurabh Sinha, Satish Chandra, David
Schmidt, and Pradeep Balachandran. 2010. Making Defect-Finding Tools Work
for You. In IICSE. 99–108.

[40] Fabio Palomba, Mario Linares-Vásquez, Gabriele Bavota, Rocco Oliveto, Massim-
iliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. 2015. User Reviews
Matter! Tracking Crowdsourced Reviews to Support Evolution of Successful
Apps. In ICSME. 291–300.

[41] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys
Poshyvanyk, and Andrea De Lucia. 2016. Parameterizing and Assembling IR-
Based Solutions for SE Tasks Using Genetic Algorithms. In SANER. 314–325.

[42] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio,
Gerardo Canfora, and Harald C Gall. 2015. How can I Improve My App? Classify-
ing User Reviews for Software Maintenance and Evolution. In ICSME. 281–290.

[43] Juan Ramos. 2003. Using TF-IDF to Determine Word Relevance in Document
Queries. In ICML. 133–142.

[44] Joseph R Ruthruff, John Penix, J David Morgenthaler, Sebastian Elbaum, and
Gregg Rothermel. 2008. Predicting Accurate and Actionable Static Analysis
Warnings: An Experimental Approach. In ICSE. 341–350.

[45] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In ICSE. 598–
608.

[46] Haihao Shen, Jianhong Fang, and Jianjun Zhao. 2011. Efindbugs: Effective Error
Ranking for Findbugs. In ICST. 299–308.

[47] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massimil-
iano Di Penta. 2016. Release Planning of Mobile apps Based on User Reviews. In
ICSE. 14–24.

[48] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-
tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
ASE. 226–237.

[49] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: Locating Bugs
from Software Changes. In ASE. 262–273.

[50] RongxinWu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. Relink:
Recovering Links between Bugs and Changes. In ESEC/FSE. 15–25.

[51] Jifeng Xuan and Martin Monperrus. 2014. Learning to Combine Multiple Ranking
Metrics for Fault Localization. In ICSME. 191–200.

[52] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From Word
Embeddings to Document Similarities for Improved Information Retrieval in
Software Engineering. In ICSE. 404–415.

[53] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where Should the Bugs Be
Fixed? More Accurate Information Retrieval-Based Bug Localization Based on
Bug Reports. In ICSE. 14–24.

https://github.com/ankidroid/Anki-Android
https://github.com/cgeo/cgeo
http://findbugs.sourceforge.net
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
http://tools.android.com/tips/lint-checks
https://github.com/k9mail/k-9
https://www.languagetool.org/
https://concept.research.microsoft.com
https://github.com/owncloud/android
https://pmd.github.io
http://stackoverflow.com
https://github.com/erickok/transdroid
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android

	Abstract
	1 Introduction
	2 Preliminaries of Android Lint
	3 Motivation
	4 OASIS Approach
	4.1 Document Preparation and Preprocessing
	4.2 Semantics-Aware Warning Prioritization

	5 Evaluation
	5.1 Research Questions and Baselines
	5.2 Experimental Setup
	5.3 RQ1: Usefulness of User Reviews
	5.4 RQ2: Effectiveness of Concept Similarity

	6 Threats To Validity
	7 Related Work
	7.1 Mining User Reviews
	7.2 Prioritizing Static Analysis Warnings

	8 Conclusion and Future Work
	Acknowledgments
	References

